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AbstrAct

Introduct ion:  Extremely low-frequency (ELF) (<300 Hz) electromagnetic 
fields (EMFs) may significantly affect several biological processes at the cellular 
and molecular level. Considering that ELF-EMF is abundant in our environ-
ment and associated with reactive oxygen species (ROS) production, exposure 
to EMF should be considered as a public health issue. ELF-EMF may alter 
the mRNA expression levels of several genes. Prodynorphin (PDYN, OMIM: 
131340), precursor of several endogenous opioid neuropeptides, and opioid re-
ceptor mu-1 (OPRM1, OMIM: 600018) a member of opioid receptor family, are 
associated with nociception and drug-dependency. 

Aim:  This study was conducted to elucidate the effects of ELF-EMF on expres-
sion levels of PDYN and OPRM1.

Mater ia l  and  methods :  Human SH-SY5Y cells were exposed first to EMF 
and harvested at three time points post exposure; immediately after exposure 
(0h), 2h and 4h after exposure. The 0.50 mT intensity of 50 Hz EMF and two 
exposure conditions (‘15 min field-on/15 min field-off’ and ‘30 min field-on con-
tinuously’) were used. Using quantitative real-time PCR, the relative PDYN and 
OPRM1 mRNA expression levels were calculated.

Resu l t s  and  d i scuss ion:  After continuous exposure to ELF-EMF, analysis 
of variance revealed a significant reduction of PDYN mRNA expression levels at 
0 hours and 2 hours time points (F = 23.86; df = 3, 8; P < 0.001). The OPRM1 
mRNA expression levels did not show any significant alteration between the exa-
mined conditions. 

Conc lus ions :  In the present study the continuous exposure condition of 
ELF-EMF was associated with the lower expression levels of the PDYN. 
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1. INTRODUCTION

Prodynorphin (PDYN, OMIM: 131340) is a precursor of 
several endogenous opioid neuropeptides including dynor-
phin related peptides which play an important role in several 
complex traits such as nociception and drug-dependency.1,2 
The Pdyn knockout mice showed increased explorative be-
havior in anxiety tests suggesting an anxiogenic role of the 
peptides derived from PDYN.3 Although in SH-SY5Y cells 
treated with morphine the PDYN mRNA expression level 
is increased after a short exposure, a longer exposure time 
resulted in a decreased level of PDYN mRNA expression.4 
It has been shown previously that a 68-bp sequence within 
the promoter region of PDYN occurs as a polymorphic ele-
ment, either singular or as tandemly repeated element up 
to 5 times.5,6 This polymorphism plays an important role in 
the PDYN expression level. Alleles with 3–5 repeats have 
an approximately 50% greater level of transcriptional activ-
ity compared to alleles with 1–2 repeats.5,7 Previous studies 
have been indicating that the high repeat alleles decrease 
the risk of heroin dependency.2,6,8 

The opioid receptor mu-1 gene (OPRM1, OMIM: 600018) 
encodes the mu opioid receptor which is the primary site of 
action for morphine and methadone and is involved in drug 
dependency.9,10 In SH-SY5Y cells treated with morphine the 
mRNA expression levels of OPRM1 decreased significantly in 
a dose dependent manner after a short exposure time; however, 
a longer exposure time led to an increased OPRM1 expres-
sion.4 In the A118G variant of OPRM1 (rs1799971, Asn40Asp), 
which is a functional polymorphism, the G allele showed a 
modest protective effect on substance dependence.11,12

Extremely low-frequency (<300 Hz) electromagnetic 
fields (ELF-EMFs) are commonly present in daily life all 
over the world. They may significantly affect several biolog-
ical processes at cellular and molecular level. On the other 
hand, the therapeutic effects of ELF-EMF have been prov-
en. EMF at low frequency of 60 Hz (in USA and Canada) 
and 50 Hz (in Europe and Asia) is one of the EMF modali-
ties were used for therapeutic purposes.13 It is recommended 
that the field intensity of EMF producing medical devices 
not exceeded 0.50 mT. Because it interferes with cardiac 
pacemakers, ferromagnetic implants and other implanted 
medical and surgical devices.14 Therefore, EMFs in these 
ranges have proven to be a safe, easy-to-use, non-invasive 
and low cost method for therapeutic purposes such as reduc-
ing pain.15 It has been reported that ELF-EMF enhanced 
production of reactive oxygen species (ROS).16–18 Cells main-
tain redox balance through production of ROS and cellular 
antioxidant capacity. The altered balance between genera-
tion and elimination of ROS plays a critical role in a vari-
ety of multifactorial complex traits including neurodegen-
erative diseases. Considering the ELF-EMF abundance in 
our environment and its association with ROS production, 
exposure to EMF should be considered as a public health 
issue.19 It has been reported that ELF-EMF may alter the 
mRNA expression levels of several genes20,21 including the 
brain,22,23 neuroblastoma cells,24 and embryonic neural stem 

cells.25,26 As there is no study published yet about investiga-
tion on the alteration of the PDYN and OPRM1 mRNA ex-
pression levels in human SH-SY5Y cells due to ELF-EMF, 
we designed and carried out the following experiment. 

2. AIM

This study was conducted to elucidate the effects of ELF-
EMF on expression levels of PDYN and OPRM1. 

3. MATERIAL AND METHODS

3.1.  Cell  culture
Human SH-SY5Y neuroblastoma cells were obtained from Na-
tional Cell Bank of Iran (Pasteur Institute, Iran). The cells were 
seeded at 3 × 105 cells/mL in 10 cm tissue culture Petri dishes 
approximately 24 hours prior to each treatment and kept in 
a cell culture incubator, using a 1 : 1 mixture of Dulbecco’s 
Modified Eagle’s Medium (DMEM) and Ham’s F12 medium 
enriched with glutamax, supplemented with 10% FBS (Gibco), 
100 U/mL penicillin and 100 µg/mL streptomycin (Sigma).

3.2.  Electromagnetic f ield exposure system and 
exposure conditions
A solenoid with 44 cm length and 14 cm diameter was used 
for EMF exposure. It consisted of 2000 turns of 1 mm diam-
eter copper wire, performing with 50 Hz alternating current 
(AC) as described previously.20 The solenoid was placed in a 
box wrapped with 2 layers of aluminum sheets and 1 layer of 
copper sheet. The field intensity is calculated by 

B = m0NI / L formula, 

where B represents the field intensity (T), m0 represents 
the vacuum permeability and equals to 4π × 10–7 (N/A2), 
N represents the number of turns, I represents the current 
in the wire (A), and L represents the solenoid length (m). 
Field accuracy was measured by a digital teslameter (Lu-
tron Electronic Enterprise). The uniformity of the magnetic 
field in the central region of the solenoid was confirmed by 
a magnetic field simulation program (Vizimag 3.185, Soft-
NewsNet s.r.l.). No significant changes in the temperature 
of solenoid were observed during exposure. In each experi-
ment, one 10-cm culture petri dish was placed horizontally 
in the center of the solenoid from 15 cm to 29 cm, where the 
uniform magnetic field equals to 0.50 ± 0.01 mT. 

We designed two exposure conditions with the total expo-
sure time of 30 minutes: (1) continuous exposure condition: 
cells were exposed to EMF for 30 minutes continuously; (2) 
intermittent exposure condition: cells were exposed to two 15 
minutes EMF with a 15 minutes interval without EMF expo-
sure. In our previous studies, we observed that total EMF ex-
posure time of 30 minutes could induce significant changes in 
the mRNA levels of DNA repair and antioxidant genes.20,24,27,28 
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Therefore, we chose the time of 30 minutes for EMF exposure 
in this study. Control cells were kept under the same condi-
tions without EMF exposure. Cells were harvested at three 
time points post exposure; immediately after completing expo-
sure (0 hours), 2 hours and 4 hours after exposure. 

3.3.  RNA extraction,  cDNA synthesis and Real-
-t ime RT-PCR
Total RNA was extracted using RNX-plus kit (Cinnagen) 
according to the manufacturer’s protocol. RNA was then 
reverse transcribed to cDNA pool by primerscript RT re-
agent kit (TaKaRa Bio) in accordance with the provider’s 
instructions. Primers for the investigated genes and TATA 
box-binding protein gene, as a housekeeping gene (TBP; 
OMIM: 600075), were reported previously.4 Designed prim-
ers were specific to mRNAs and did not amplify genomic 
DNA. Quantitative real-time PCR analysis was performed 
using sybr premix Ex Taq II (TaKaRa Bio) in Rotor-Gene 
6000 HRM (Corbett Research). The two-step real-time PCR 
program was: pre-amplification denaturation at 95°C for 30 
s, 40 cycles of denaturation at 95°C for 5 s, followed by an-
nealing and extension at 60°C for 45 s. The relative gene ex-
pression level was measured according to the 2–∆∆Ct method 

based on the threshold cycle (Ct) values.29 All data were nor-
malized to the value of control cells placed in switched off 
solenoid which assumed 1.

3.4.  Statistical  analysis
All experiments were done in triplicates. Data are shown as the 
mean ± SE of three independent experiments. The differences 
between treatments were evaluated using one-way Analysis of 
Variance (ANOVA) followed by Duncan post hoc test. Statis-
tical analysis was conducted using SPSS statistical software 
package (SPSS Inc., Chicago, IL, USA) (version 11.5). A prob-
ability of P < 0.05 was considered statistically significant.

4. RESULTS 

The relative PDYN mRNA expression levels in SH-SY5Y 
cells exposed to ELF-EMF is shown in Figure 1 for both ex-
posure conditions. After continuous exposure to ELF-EMF, 
analysis of variance revealed a significant reduction of PDYN 
mRNA expression levels at 0 hours and 2 hours time points 
(F = 23.86; df = 3, 8; P < 0.001; Figure 1A). In contrast to 
the continuous exposure condition, in the intermittent ex-

Figure 1. Relative PDYN mRNA expression levels in SH-
-SY5Y cells after exposure to ‘30 min field on continuously’ 
(A) and ‘15 min field-on/15 min field-off’ (B) electromagnetic 
fields (EMF, 50 Hz, 0.50 mT) at 0, 2, and 4 hours post exposure. 
Comments: n = 3, mean ± SE. *P < 0.05 all values were com-
pared with unexposed cells (=1) using Duncan post hoc test.

Figure 2. Relative OPRM1 mRNA expression levels in 
SH-SY5Y cells after exposure to ‘30 min field on continu-
ously’ (A) and ‘15 min field-on/15 min field-off’ (B) elec-
tromagnetic fields (EMF, 50 Hz, 0.50 mT) at 0, 2, and 4 
hours post exposure. Comments: n = 3, mean ± SE. 
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posure, the PDYN mRNA expression levels showed no sig-
nificant difference in cells exposed to ELF-EMF compared 
to control cells (F = 0.09; df = 3, 8; P = 0.962; Figure 1B). 

The relative expression levels of OPRM1 in the continu-
ous exposure (Figure 2A) and in the intermittent exposure 
conditions (Figure 2B) showed no significant alteration af-
ter any of the examined treatments (continuous exposure 
condition: F = 1.21; df = 3, 8; P = 0.366; intermittent ex-
posure condition: F = 0.21; df = 3, 8; P = 0.886). 

5. DISCUSSION

PDYN plays an important role in neuropsychiatric diseases 
such as drug abuse.1-3 The low repeated alleles of variable 
number of tandem repeats of PDYN showed approximately 
50% lower transcriptional activity compared to high repeat-
ed ones5 and were associated with increased risk of depend-
ency to heroin.6 

It has been shown that heroin increases the production of 
ROS.30,31 Furthermore, drug abusers are at oxidative stress.32,33 
Interestingly, the mRNA expression levels of several anti-ox-
idant genes significantly decreased in SH-SY5Y cells treated 
with morphine.34 It has been reported that oxidative stress 
plays an important role in drug dependency. Previous stud-
ies have demonstrated that ELF-EMF is associated with pro-
duction of ROS.16–18 Moreover, reduced PDYN expression 
in the human brain is associated with opiate dependency.35,36 
Interestingly, in the present study the continuous exposure 
condition of ELF-EMF was associated with the lower ex-
pression levels of the PDYN. It may indicate that in cells ex-
posed to ELF-EMF the PDYN expression level significantly 
decreased via production of ROS. Consequently, it might be 
concluded that exposure to ELF-EMF may appear as a risk 
factor for using illegal drugs.

However, the present study has some limitations; there is 
no data available on experimental animal models and human 
subjects exposed to ELF-EMF. In the present study, only one 
intensity and two exposure conditions of the ELF-EMF were 
investigated. Moreover, there is no data dealing with the pro-
tein level of the selected genes. It will be interesting to further 
investigate the effects of other intensities and conditions of 
ELF-EMF exposure on opioid system related genes. Moreo-
ver, epidemiological studies should help to elucidate the as-
sociation between exposure to ELF-EMF (environmentally 
and/or occupationally) and the risk of drug dependency. 

6. CONCLUSIONS

In the present study we demonstrate that the continuous 
exposure condition of ELF-EMF is associated with a lower 
expression level of the PDYN. Our data suggests that in 
cells exposed to ELF-EMF the PDYN expression levels sig-
nificantly decreased via production of ROS. Epidemiologi-
cal studies should help to elucidate the association between 
exposure to ELF-EMF and the risk of drug dependency.
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